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A new initial-value method is described, based on a remark by Drury, for solving stiff 
hnear differential two-point eigenvalue and boundary-value problems. The method is 
extremely reliable, it is especially suitable for high-order differential systems, and it is capable 
of accommodating realms of stiffness which other methods cannot reach. The key idea behind 
the method is to decompose the stiff differential operator into Tao non-s~~~operators, one of 
which IS nonlinear. The nonlinear one is specially chosen so that it advances an orthonormal 
frame. indeed the method is essentially a kind of automatic orthonormalization; the second is 
auxiliary but it IS needed to determine the reqmred function. The usefulness of the method is 
demonstrated by calculating some eigenfunctions for an Orr-Sommerfeld problem when the 
Reynolds number is as large as 10’. 

1, INTROOUCTI~N 

Although linear differential problems are usually easier to solve aaafyticalfy than 
nonlinear problems, a somewhat curious feature of trying to obtain a numerical 
solution on a computer, which will necessarily have afinite word-length, is that it is 
often more difficult to solve linear problems. The reason for this is that basic 
solutions of linear differential systems are usually exponential in character and if 
some solutions have widely differing exponents they will grow or decay very rapidly 
relative to each other as the independent variable changes. Thus, because of the finite 
word-length, it is often impossible to form sensible numerical combinations of the 
basic solutions. Such problems are said to be stiJJ: 

Throughout this paper we shall be concerned with the numerical solution of stiff 
linear two-point boundary-value problems for systems of ordinary differential 
equations by the use of explicit shooting methods. The hallmark of a stiff boundary- 
value problem is when the number of basic solutions which dominate as the 
integration proceeds is less than the number of unknown initial conditions. It is well 
understood that if one wishes to solve a stiff boundary-value problem by using an 
initial-value shooting method then one has to resort to a special technique such as 
orthonormalization [5, 11, or the Riccati method 171, or the compound matrix 
method [ 4, 6 ]. 

How nice it would be, however, if one could simply use the standard (super- 
position) shooting method to solve a stiff problem. Or, alternatively, how nice it 
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would be if one could start with a set of orthonormal solutions, satisfying the known 
initial conditions, and integrate away so that these solutions remain orthonormal. Of 
course, we know that we cannot do this if we integrate the given differential system. 
but maybe we can integrate instead a slightly different differential system whose 
solutions remain orthonormal and span the required subspace, that is. the same 
subspace as spanned by the solutions of the original differential system. This can 
indeed be done and the above idea is due to Drury [ 31; it should be noted, however. 
that although the mathematical formulation of the idea as expressed in his paper is 
formally correct, he did not use his idea to publish any numerical calculations. This 
is a dangerous situation in the field of numerical analysis because the usefulness of a 
method is dominated by its stability characteristics. 

In Section 2 of this paper we explain how to develop Drury’s idea to solve stiff 
linear homogeneous problems and in Section 3 we indicate how to solve 
inhomogeneous problems. Then, in Section 4, we explain in detail how to use the 
method to obtain eigenfunctions of the Orr-Sommerfeid equation for plane Poiseuilie 
flow when the Reynolds number is very large. We also discuss briefly some 
comparisons between using the new method and using orthonormalization. 

2. DESCRIPTION OF THE METHOD FOR THE HOMOGENEOUS PROBLEM 

The general linear homogen~us problem of order n may be written as 

y’ = Ay, (1) 

where y is a complex n-vector, A is a complex n x n matrix of coefficients and a’ 
denotes differentiation with respect to the independent variable x. Since (1) is linear 
and homogeneous it is an eigenvalue problem, at least one of the components of A 
will be a function of the unknown eigenvalue c, say. We suppose that the 
homogeneous boundary conditions are separated so that q boundary conditions are 
known at one end of the range of integration and p at the other end; p $ q = n. For 
convenience of discussion we also suppose that the independent variable x may be 
defined so that the range of integration is 0 < x < 1 with q > p boundary conditions 
given at x = 0, the integration being from x = 0 to x= 1. Thus. there will be p 
~~~~0~~ initial conditions and so all the solutions of (I) which satisfy the known 
initial conditions will lie in a subspace V of dimension p. Without any loss of 
generality we may assume that y has already been suitably redefined by a non- 
singular transformation so that the known initial conditions on y at x = 0 simply 
become that the first q components of y are zero. We do not need to mention until 
later the other p boundary conditions on y at x = 1. 

Let y, , y2 . . . . . yp be a set of p vectors which are orthonormal at x = 0 and such that 
each of them satisfy the known initial conditions, for example, we may choose y, 
(1 < i < p), so that at x = 0 every component of yi is zero except the (q + 0th 
component which we may choose to be one. Given an estimate for the unknown 
eigenvalue c now calculate the yi by integrating simultaneously from .Y = 0 to x = 1. 
plot the stiff equations yj = AY-~, but instead the non-stiff equations 
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Y; = AY, + g,y,. (2) 

where 1 < i, j< p and the summation convention applies to j. In (2) the scalar 
quantities gii are specially chosen so that the yi remain orthonormal, i.e., so that 

YlYi= 6ki (1 <k< PI3 13) 

where a ’ denotes the complex conjugate transpose and 6 is the Kronecker delta. 
The conditions which the g, must satisfy may be found by differentiating (3) and 

using (2), the solution is not unique and we select the particular one which also 
satisfies the stronger condition . 

y:y; = 0, (4) 

so that the g, are determined by 

YLAY, + gi/YktY, ~0. (5) 

Given p and A we may solve the simultaneous linear algebraic equations (5) for gI, 
in terms of the yi, substitute in (2) and then integrate (2) to evaluate the yi for 
0 < x < 1. {For high-order differential systems it may be more appropriate to define 
the g, so that they are triangular, whence they may be determined more easily. Note 
that although they are only scalars they depend upon x and the yi in a very nonlinear 
way.) 

As Drury mentions, note that in view of (4) we only allow the y, to increment 
perpendicul~ to the subspace W which they span. As the integration proceeds the yf 
remain orthonormal and only rotate as much as is necessary for them to stay in IV. 
Now the whole essence of the method lies in the fact that W is the same subspace as 
V! This is not immediately obvious and so we now indicate how to prove (Drury: 
private communication) that this is indeed the case. Let y be the required solution of 
(I), lying in V, and let the yi be solutions of (2), (4). and (5) lying in IV. Now 
consider the derivative of the wedge product y, A y? A ... /\ yP A y; we have 

(Yl A Y2 A . ..~Yp~Y)f=(Ay.+g,,Y,)AYzA...~~,~~ 

+ YI A MY, -t g,,y,) A ~3 A .+a A Y,, A Y 

S.YiAY,A ..,n~~-,A(A~~fg~i~jfAy 

+ Yl A Y2 A . . - A yp A (&I, 

:. (y, A y* A *** Ay,Ay)‘=Ay,Ay,A-‘Ay,Ay 

+Y+AY~AY:,A-AY~AY 

(6) 

+ YI A ~2 A . . . AAy,Ay+y, Ay,A--- Ay,AAy 

+ (g,, + g22 + -” + gp,)y, A yz /“\ e.1 A ypA Y- (7) 
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However, all the terms on the right-hand side of (7) excluding the last term, 
constitute a linear mapping from A p + ’ C” to itself and hence (7) may be written 

(Y,AY*A--- AYpAY)t=L(y,AY2A**. ftY,AY) 

+ (g,, + g,, + ... + i?,p)(Y, AY2 A ‘*. A Yp A YL (8) 

where L is a linear map from Ap’+‘C” to itself. 
When x = 0 then y must be a linear combination of the yi since the yI span V there 

and thus 

Yl A Y2A *** A Yp A y = 0, when x = 0. (9) 

It follows from (8), and from repeated differentiation of (8), that all the derivatives of 
the left-hand side of (9) are also zero at x = 0. By appealing to analyticity we have 
therefore that 

and so throughout the range of integration y must be a linear combination of the y, 
and hence W is the same as V. So for each value of x in the range 0 <x < I the y, 
form an o~honormal base of Y and so in this sense the method is an auio~a?ic 
orthonormalization. 

To determine the unknown eigenvalue c we proceed in the usual manner: since y is 
a linear combination of the yi there must exist scalars /zi such that 

y=l,y, +;i*y2 + ... +A P P’ y (11) 

and the boundary conditions at x = 1 will be of the form 

By=O. (12) 

where B is a complex p x n matrix. From (11) and (12) it follows that c may be 
found by using a standard iteration procedure, such as Ne~on-Raphson or Muller’s 
method, to make the determinant id,,1 zero, to some suitably preassigned tolerance 
level, where 

d, = b, Ye+ 1 &i, j<p, 1 ,<k,<n. (13) 

and ykj denotes the kth component of y,. This iteration will be numerically stable 
because the yi are orthonormal, from the numerical point of view what we are doing 
is akin to the use of the standard (superposition) shooting method for a non-stiff 
problem. 

Having found the eigenvalue c, as described above, we may now proceed to 
determine the eigenfunction y as follows: first, at the final stage of the iteration to 
find the eigenvalue c, during the last integration from x = 0 to x = 1 we carefully 
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store the values of the yi every so often.’ Second, we determine the scalars A, in (11) 
by a backward integration from x = 1 to x = 0 of the differential equations satisfied 
by the lj. To obtain these, differentiate (1 1), then using (1) and (2) yields 

qy, + A, g,jyj = 0. (14) 

However, since the yi are linearly independent we may equate to zero the coefficient 
of each yi separately in (14); hence 

1; = -g,J,. (15) 

So the eigenfunction y is found by simultaneously integrating (2) and (15) from .X = 1 

to x = 0, and then using (11). The initial values for the Li at x = 1 are obtained by 
solving the equation Db = 0. 

We have used the above process to determine the eigenfunction for many different 
stiff problems and never encountered any numerical instability except for the fact that 
the equations for the y, are numerically unstable during the backboard integration and 
so their values should be reset every so often to the stored values. Alternatively. the 
values of the yi can be stored at every mesh point on the final forward integration 
and then (2) need not be integrated backwards; however, this means that more 
storage space will be needed and it is not so elegant. We discuss in detail the 
evaluation of an eigenfunction for a very difficult stiff problem in Section 4. 

3. THE INHOMOGENEOUS PROBLEM 

In this section we just mention briefly the way in which the content of the previous 
section needs to be amended to solve the general linear inhomogeneous problem 

y’=Ay+r. (16) 

where r is a complex n-vector and where the boundary conditions may also be 
inhomogeneous. Thus we now have a strict two-point boundary-value problem rather 
than an eigenvalue problem. In order to solve a linear inhomogeneous problem most 
methods obtain the solution by forming an appropriate combination of the solutions 
of the associated homogeneous problem with a particular integral and the method of 
this paper is no exception to this general rule. 

We assume that y has been suitably defined so that the known initial conditions on 
y at x = 0 are that the first q components of y are given there hence, say, 

Y/ = Y/3 1 < I< q, at x = 0. (17) 

’ Here, and later, where we use the phrase every so offen we mean after every tenth or so Integration 
step; the idea is to obtain a suitable balance between the accuracy required and mmimizatlon of storage 
space needed by the computer program. 
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where y, is the Ith component of y and the y, are known. Now calculate y, , y,...., y,, 
for the associated homogeneous problem y’ = Ay and zero boundary conditions in 
the same way as described in Section 2, and s~rn~~tane~~s~~ integrate also the 
additional equation 

Y~+I=AY~+, +r+ gp+IjY/* (18) 

storing the values of the y, and yp+ , every so often. The initial condition at x = 0 for 
yp+, is given by 

Ylp+l = YI- 1 <r<q; y@+, =o, q+l<k<a, (19) 

and the scalars gP+Ij are specially chosen so that yP+ I remains orthogonal to the 
y,-this is what physicists sometimes call reorthonormalization-that is, we choose 
them via 

gp+ljYtYJ=-~:A~p+t-YYltr. (20) 

The required solution of (16) is now of the form 

Y =Yp+I +/liY** (21 

and the boundary conditions at x = 1 will be of the form 

By=& (22 

where B is a complex p x n matrix and 6 is a complex p-vector. Substituting (2 1) in 
(22) we see that the initial values of the At at x = 1 are given by solving the linear 
algebraic equations 

&By, = 8 - ByD+, . (23) 

As in the case of the homogeneous problem we determine the iii for .Y < 1 by 
integrating backwards from x = 1 to .Y = 0 the differential equations which they 
satisfy. By differentiating (21) and using (2) (16). and (18) we find that these 
equations are 

A: = g0.t Ii - g/i’,* (24) 

Thus, the required solution y of (16) is found by simultaneously integrating (2). ( 18), 
and (24) from x = 1 to x = 0, and then using (21). During this integration the yi and 
Y P+ 1 should be reset every so often to their previously stored values-see the last 
paragraph of section 2. 
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4. A NUMERICAL EXAMPLE:THE ORR~OMMERFELD EQUATION 

To illustrate the power of the method of this paper we will use it to calculate the 
eigenvalue c, and in particular the associated eigenfunction, for the most unstable 
mode in the classical linear stability problem of plane Poiseuille flow, when the 
wavenumber a = 1 and the Reynolds number R is very large. For this problem the 
characteristic values of the differential operator are of order f 1 and &i,R ‘/* so that 
when R is very large then the problem is very stiff indeed. 

The differential equation for this problem is the Orr-Sommerfeld equation 

(D2-ff2-iiaR(1 -x2--c)J(L?‘--a*}p-22iaRq7=0, (25) 

and the appropriate boundary conditions for the most unstable mode are 

p’=fpp”‘=;O, when x= 0, (26) 

and 
rp=$9’=0, when x= 1. (27) 

In the above both D and a’ denote differentiation with respect to x. Our uitimate aim 
will be to calculate the eigenfunction when R = 10’ since, so far as we are aware, no 
one2 has managed to do this yet by any method; also this particuiar value has a close 
association with asymptotic theory. 

In order to formulate the problem in the notation of Section 2 we define 

y = f&9’, 9” - (x29,9”’ - a 29’)T, (28) 

so that (25) becomes 

where 

Y’ = AY, (29) 

0 100 
AS ( a2 

0 

0 1 0 1 001’ 
a ObO 

(30) 

with 

a = 2iaR, b=a*+iaR(l -x2-c). (31) 

For this particular problem it transpires that it is better to commence the 
integration at the wall where x = 1 rather than at x = 0 because the region where the 
eigenfunction varies most rapidly is near the wall. So we begin by making an initial 

.’ A referee’s report which arrived too late to affect the content of this paper indicates that Scott and 
Watts have also performed this caicu~ation using their o~onormalizatioR code. 

581,&l/2-11 
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estimate for the unknown eigenvalue c and integrating from x = 1 to x = 0 the eighth- 
order system 

Y: =AY, + gltyl+ glzy2. 

Y; = AY, -I- gzly, + gxyz, 
(32) 

where, solving (S), 

dg,, = (Y~Y,)(Y~AY,) - (Y~Y,NY!AY,), 

de a= (Y~~Y,)(Y!AY+ t~lt~,)t~y:A~,h 

6, = (Y!Y,XY@Y,I - (Y;Y,)(Y~AY,~ 

dgx= (Y:YJ(Y?AY,I- (Y!Y,MY:AY,L 

d=(Y?Y*)tY:Y2)--YfY,)(YfY2). 

(331 

The initial conditions for y,, yz are given by 

Y, = (O,O, 1, O)‘, Y2 = to, 070, IIT, at x= I. (34) 

This integration determines the values of y, and y2 at x = 0 given the initial estimate 
of the eigenvalue c. 

Now the required eigenfunction y will be a linear combination of y,, y2 so that 

Y ‘AIYI +J,Y*, (35) 

and the boundary conditions (26) tell us that we must have 

(I:: C::) (::) ==@ at x=0. (36) 

Thus, we found the eigenvalue c by using Newton-Raphson iteration until the deter- 
minant 

A = Y21 Y42 - Y22 Y41r (37) 

was sufficiently small, the iteration was terminated when successive iterates differed 
by less than a pre-assigned tolerance level, usually about 10e9. As a check, and to 
ensure that we felt confident that we had calculated c correctly to eight decimal 
places, the whole of the above procedure was repeated for the adjoint differential 
problem. 

It is appropriate at this stage to mention a very important point concerning the 
numerical stability of the method. We know that the method keeps yl, y2 
orthonorma1 so that y]y, = y:yz = 1 and yfy2 = yly, = 0 so there is a te~~~a~io~ to 
replace the rather cumbersome Eq. (33) by g,, = -yfAy,, g,, = -y$Ay, ,..., d = 1. 
This simplification is, however, to be sorely resisted as it is not numerically stable. It 
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is for this reaon that the mathematical formulation of the method proposed by Drury 
j3] (see his equation (22)) is not numerically successful, as we discovered in the early 
stages of our work. The full formulation (33) is essential to ensure that the method is 
numerically stable. 

Having found the eigenvalue c we solve (36) to obtain a solution for A,, d, when 
x = 0; since the problem is homogeneous there is an arbitrary scale factor. Next, we 
determine A,, A, for all values of x by a “backward” integration from x = 0 to x = 1 
of the differential equations satisfied by 1, , a,. These are obtained by differentiating 
(35), using (I), (32), and equating coefficients of y, , yz separately to yield (see (15)) 

(38) 

Equations (32) for yi, y2 are also integrated backwards at the same time as (38), 
every so often resetting y,, y2 to previously stored values, and then (35) is used to 
construct the required eigenfunction y. 

We concentrated our attention upon finding the eigenvalue c and the eigenfun~tion 
y = (q, rp’, o” - a*v), o”’ - a$‘)“ when a = 1 and log&4 = 5(1)9; the case R = lo9 
seemed to be a good final one to consider since the associated asymptotic theory 
depends heavily on R - Ii3 = 0 001. . We used double-precision Fortran (56 mantissa 
bits) on an IBM 370/168. 

As regards the eigenvalue c we also determined the smallest number of integration 
steps of equal length which we can use to obtain c correct to four significant figures 
and we compare this with the corresponding number using the orthonormalization 
method in Table I. 

When R is very large the number of steps needed by both methods is proportional 
to R “* because the main restriction is that the Runge-Kutta integration routine 
which we used must be convergent. It is clear from Table I that when R > lo’, so 
that the characteristic values of the differential operator are uery widely separated 
then the method of this paper requires approximately twice as many integration steps 

TABLE I 

The Number of Integration Steps of Equal Length Required by the Orthonormalization Method (ONIZ) 
and by the Present Method (PM) to Calculate the Eigenvalue c, Correct to Four Significant Figures, of 

the Orr-Sommerfeld Problem (25)-(27) for Plane Poiseuiile Flow 

log,,R c ONIZ PM 
.-.~ 

5” 0.14592479-0.01504204i 325 400 
6 0,~459252~.01398327i 600 700 
7 0.03064 130-0.00726049i 1200 2300 
8 0.01417134-0.003512391 3700 7300 
9 0.00656630-0.00 166002i 12000 24000 

fl For this entry c was calculated correct to live decimal places instead of four significant figures. 
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as orthonormalization-this suggests that y,, y2 probably have a tanh rather than an 
exponential character. The number of iterations needed was usually three or four, and 
so about the same as when the orthonormalization method is used. 

When R & lo6 so that the characteristic values are not too widely separated then 
the step length is not so severely restricted and, as Table I indicates, the present 
method requires scarcely any more steps than the orthonormalization method. Of 
course really both methods should be used with a sophisticated variable-step 
integration routine such as RKF45, even if this were done however the ratio of the 
number of steps needed by the two methods would be little changed. 

We mentioned earlier that the real power of the method is exempli~ed by its ability 
to calculate the eigenfunction y E (9, (o’, 9” - a*~, ~0”’ - a20’)r for very large 
values of the parameter R which other methods have not been able to reach. Also, 
finding the eigenfunction by the orthonormalization method is a laborious accounting 
task which needs very careful treatment. So we used our method to calculated cp and 
its derivatives and we encountered no obstacles whatsoever except that for the most 
diflicult case, R = 109, it was essential to use a variable mesh to obtain rp and rp’ 
correct to about 1 part in 5000, a margin which is not discernible when plotted. 

Figure 1 shows the real and imaginary parts of Ed = p,, + i(o, when R = 106, as 
expected we see that the most rapid variation takes place in the vicinity of the so- 
called critical layer near the wail x = 1; note that the top of the peak in oj is at about 
x = 0.97. In Table II we give values of o and @ for some selected values of x; the 
normalization used is (p(O) = 1. 

0.042 

0.036 

0.030 

0.024 

0.006 

X 

FIG. 1. The real and imaginary parts of the eigenfunction q~ = qr + iqti when a = 1 and R = 106. 
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TABLE II 

Selected Values of the Eigenfunction 
and Its Derivative when a = 1 and R = 10" 

0 1 0 0 0 
0.10 0.994215 0.000161 -0.114770 0.003220 
0.20 0.976935 0.000646 -0.232886 0.006506 
0.30 0.941467 0.001467 -0.357953 0.00993 1 
0.40 0.904973 0.002640 -0.494180 0.013588 
0.50 0.848082 0.004196 -0.646944 0.017610 
0.60 0.774783 0.006182 -0.823916 0.02223 1 
0.70 0.682080 0.008679 -1.037860 0.027974 
0.80 0.565125 0.011864 -1.315809 0.036512 
0.90 0.414021 0.016380 -1.752106 0.059504 
0.9 1 0.396177 0.017002 -1.817852 0.065280 
0.92 0.377635 0.0 17708 -1.893744 0.077689 
0.93 0.358173 0.018515 -2.002780 0.071782 
0.94 0.338027 0.018894 -1.968373 0.026988 
0.95 0.319256 0.021543 -1.910555 0.711309 
0.96 0.292490 0.034694 -3.942176 1.677579 
0.97 0.235171 0.043870 -7.376132 -0.451300 
0.98 0.152351 0.022455 -8.894877 -3.397737 
0.99 0.059840 -0.0064 17 -9.229558 -1.299547 

1 0 0 0 0 

When R = IO9 the region of rapid variation is so narrow that it is barely sensible 
to show a plot of p over the whole range 0 < x < 1, we do this in Fig. 2, however, just 
to indicate to the reader what a difficult calculation this case is. In Fig. 3 we present 
a more sensible plot of the real and imaginary parts of (D over the range 0.95 < x < 1; 
note that the top of the peak in vi is now at about x = 0.997, this value together with 
the corresponding value of 0.97 for the R = lo6 case implies that the critical-layer 
region extends all the way to the wall so that it includes the wall-layer region. In 
Table III we give values of v, and p’ for some selected values of x; the normalization 
used is again ~(0) = 1. 

Since the value R = lo9 is so large the shape of (D shown in Fig. 3 should be very 
close to the asymptotic solution for 9 of the Orr-Sommerfeld equation and it would 
be very interesting to be able to make a comparison. Although a lot of work has been 
done on the asymptotic form of the eigenvalue relation for the Orr-Sommerfeld 
equation, see, for example [2], much less work has been done on the asymptotic form 
of the eigenfunction and we do not know where any such eigenfunctions have- been 
plotted. Moreover, most of the asymptotic work has been done for a, R-values which 
lie on, or very close to, the neutral stability curve, whereas when a = 1 then the 
solution is relatively highly damped, being well away from the neutral stability curve. 
Consequently, we have not been able to make an asymptotic comparison with Fig. 3. 
despite the fact that we would very much have liked to do so. 
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FIG 2. The real and imaginary parts of the eigenfunction 9 = (a, + #, when u = 1 and A = 10’ 
plotted over the whote range 0 < x < 1. 
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FIG. 3. The real and imaginary parts of the eigenfunction 9 = 9, c i9, when LI = 1 and R 1-= IO” 
piotted over the partiai range 0.95 <x < 1. 



STIFFBOUNDARY-VALUE PROBLEMS 355 

TABLE III 

Selected Values of the Eigenfunction 
and Its Derivative when a = 1 and R = IO9 

0 1 0 0 0 
0.90 0.479061 0.001682 -1.5314 0.0055 
0.91 0.463504 0.001738 -1.5807 0.0058 
0.92 0.447432 0.001798 -1.6346 0.0062 
0.93 0.430795 0.001862 -1.6940 0.0067 
0.94 0.413527 0.001933 -1.7607 0.0074 
0.95 0.395547 0.002012 -1.8374 0.0084 
0.96 0.37673 1 0.002 102 -1.9288 0.0099 
0.97 0.356894 0.002212 -2.0438 0.0124 
0.98 0.335708 0.002360 -2.2045 0.0179 
0.99 0.3 12404 0.002616 -2.4963 0.0403 
0.991 0.309883 0.002658 -2.5457 0.0416 
0.992 0.307325 0.0027 10 -2.5717 0.0877 
0.993 0.304604 0.002864 -3.0084 0.1040 
0.994 0.301606 0.002 17 1 -2.1074 -1.7852 
0.995 0.302993 0.00 1767 4.955 I 4.4797 
0.996 0.30294 1 0.018100 -13.6548 27.8864 
0.997 0.261255 0.043265 -70.8207 11.3602 
0.998 0.171740 0.02903 1 -101.3322 -36.202 1 
0.999 0.066749 -0.005572 -103.6835 - 17.9406 

I 0 0 0 0 

5. CONCLUDING REMARKS 

We have described a new shooting method for solving stiff linear eigenvalue and 
boundary-value problems which solely utilizes well understood techniques for solving 
similar non-strflproblems. The essence of the method is to use the standard shooting 
method to integrate not the given differential system but, instead, a carefully chosen 
associated nonlinear differential system. The beauty of the method is that it advances 
an orthonormal frame which spans the space of all those solutions which satisfy the 
known initial conditions and so no orthonormalization is required. 

Other shooting methods for stiff linear problems have serious disadvantages: with 
the orthonormalization method laborious accounting is needed, especially to 
reconstruct the required function; with the Riccati method the frequent occurrence of 
singularities causes technical problems and loss of accuracy; with the compound 
matrix method for a differential system of order 2n one has to integrate ( 2) 
equations, and so use of this method is restricted to low-order differential systems. 
The present method suffers none of these disadvantages, it is very reliable, it only has 
to integrate as many differential equations as the orthonormalization method, and we 
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have used it on a very stiff Orr-Sommerfeld problem to calculate eigenfunctions 
which no other method has been able to produce. The sole disadvantage of the 
method is that it is somewhat slower than the orthonormalization method for cases 
with which the latter can cope-mainly because the gi, terms produce longer right- 
hand sides to integrate. 

Throughout all our numerical work using the method of this paper on many 
different problems we have never experienced any numerical instability, essentially of 
course because everything is so nicely nearly orthogonal. In a later paper we shall 
explain how to develop the ideas contained herein to obtain the solution of stiff 
nonlinear initial-value problems by solving instead a small finite sequence of non-stiff 
problems. 
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